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Nonorthogonal weights of modern VB wavefunctions.
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The CASVB approach is a recent development in modern valence bond theory which aims
to provide easily visualized, highly accurate representations of very general types of CASSCF
wavefunctions. Fully variational optimization may also be performed for quite general types
of modern valence bond wavefunction. Numerous definitions of nonorthogonal weights are
used to investigate the role of contributions from various types of ‘ionic’ configurations,
taking hexatriene and N2S2 as illustrative examples.

1. Introduction

It is now widely accepted that any approach that seeks realistic molecular wave-
functions within a valence bond (VB) formulation is likely to involve optimization of
some or all of the participating orbitals. To distinguish these procedures from ear-
lier, more qualitative treatments, typically based on strictly localized orbitals, we have
adopted the term ‘modern valence bond theory’. Since a valence bond wavefunction
is generally of multideterminantal form, there are many parallels to the multiconfigu-
ration self-consistent field (MCSCF) methods of molecular orbital (MO) theory, such
as the restriction to a relatively small ‘active space’ describing the chemically most
interesting features of the electronic structure. This relationship is emphasized further
in CASVB [8,36–40], due to the very close connection with the complete active space
self-consistent field or CASSCF approach.

Many different factors determine the utility (or otherwise) of any computational
procedure. Some points to bear in mind in the present context are computational effi-
ciency, flexibility of the optimization, supporting programs, and the general availability
of the codes. For a valence bond procedure, the computational efficiency is to a large
extent determined by the strategy for overcoming the nonorthogonality problem. This
is achieved in CASVB by a transformation of the valence bond wavefunction to an
orthogonal full CI representation. In this sense, a CASVB wavefunction is a particular
constrained form of CASSCF wavefunction. While this might not be the ‘best’ or
most elegant solution to this problem, there are unquestionable advantages of such
an approach. The possibility for overlap-based optimization, for example, serves to
make the valence bond interpretation of CASSCF wavefunctions significantly more
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efficient than similar schemes based on variational optimization (see, for example,
[7]). Furthermore, the proper utilization of point group symmetry [39], and special
techniques for applying the electronic Hamiltonian to full CI vectors [21,32,37,42]
combine to make the efficiency of variational optimization also compare favourably
with alternative methods presently available.

Computational efficiency is not on its own a useful measure of the practicality
of a given method. Regarding the optimization procedure, other significant features
in CASVB are the flexible form of the modern VB wavefunctions that can be used –
these can be of quite general multiconfigurational form – as well as the possibility of
constrained optimization. Constraints attain special importance in VB optimization for
removing redundant parameters, imposing partial orthogonality, or symmetry adapt-
ing the overall wavefunction [8,39]. Such constraints may avoid linear dependency
problems or help convergence towards a particular type of solution.

Although on the increase, the number of researchers employing VB methodology
is still very much in the minority. This is understandable in view of the lack of gen-
erally available programs, and the significant ‘activation barrier’ thus associated with
undertaking these kinds of studies. To help alleviate this deficiency, our procedures
have now been made publicly available as part of the quantum chemistry package
MOLPRO1, in which they are interfaced to a sophisticated CASSCF program [25,41].
We foresee a wider distribution of our code in the near future. An important additional
benefit is the number of supporting programs that become available in this way. In
principle, all of the impressive technology developed within the CASSCF formalism
becomes accessible within a valence bond framework. The most obvious examples
include direct evaluation of integrals, one- and two-electron properties, geometry op-
timization, and the treatment of excited states. All such techniques may be employed
without the need for major restructuring of existing codes.

We present in section 4 two new applications of the CASVB approach – trans-
1,3,5-hexatriene and N2S2 – exemplifying various aspects of our method. A recur-
ring theme is the analysis of modern VB wavefunctions by assigning nonorthogonal
weights to the constituent structures or spatial configurations. After a brief review of
the CASVB strategy, we review in section 3 the commonly employed definitions of
nonorthogonal weights and their implementation within our procedure. Finally, we
present our main conclusion in section 5.

2. The CASVB strategy

The invariance of certain types of wavefunctions with respect to orbital trans-
formations is utilized in many methods. One important motivation is to facilitate the

1 MOLPRO is a package of ab initio programs written by H.-J. Werner and P.J. Knowles, with contri-
butions from J. Almlöf, R.D. Amos, A. Berning, M.J.O. Deegan, F. Eckert, S.T. Elbert, C. Hampel,
R. Lindh, W. Meyer, A. Nicklaß, K. Peterson, R. Pitzer, A.J. Stone, P.R. Taylor, M.E. Mura, P. Pulay,
M. Schütz, H. Stoll, T. Thorsteinsson and D.L. Cooper.
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interpretation of the wavefunction, as for example in the common MO localization
schemes [1,2,12–14,16,33], while an important alternative is to speed up the con-
vergence of the total energy or of properties when going to more highly correlated
treatments (e.g., methods based on ‘natural orbitals’ [9,27] or on ‘improved virtual
orbitals’ [23,24]). This invariance also underpins CASVB, with a main aim being
to increase the interpretability of CASSCF wavefunctions by utilizing the inherent
freedom in the representation of the active orbital set. Related work in this area is
discussed in our earlier papers [8,36–40].

Full CI spaces are invariant with respect to (nonsingular) linear transformations
of the defining one-electron basis:

{φ′} = {φ}O ⇒ {Φ′} = {Φ}T(O). (1)

In these expressions, the {} signify row vectors of orbitals, φ, or configuration state
functions (or determinants), Φ. In general, the configuration space may contain a core
part common to all functions, ΦI = A(Φcore × Φact

I ), and can then be classified as
an ‘N electrons in m orbitals’ full CI within the active space. The transformation of
the full CI space, T(O), is also linear and, for nonsingular transformations, {O} and
{T(O)} form isomorphic groups. Using the basic property T(O1O2) = T(O1)T(O2),
the effects of the full CI transformation can be determined very efficiently (without
direct construction) by decomposition of the orbital transformation [28,36,37].

Useful representations of ΨCAS may be obtained by expressing a trial wavefunc-
tion in the form

ΨVB =
∑
I

cIΦVB
I =

∑
I

cI
(
{Φ}T

(
OVB))

I
, (2)

and optimizing OVB and the structure coefficients, cI . We have previously considered
overlap-based

maximize SVB =
〈ΨCAS|ΨVB〉
〈ΨVB|ΨVB〉1/2

, (3)

or energy-based

minimize EVB =
〈ΨVB|Ĥ |ΨVB〉
〈ΨVB|ΨVB〉

, (4)

criteria for the optimization. Both aim to give accurate approximations to CASSCF
wavefunctions. Emphasis will be placed in the present account on the overlap criterion,
but energy-based optimization is also of significant utility, especially in the context of
fully variational applications. The number and the nature of the VB structures in
equation (2) may be varied according to the features of a given application. In many
cases a sensible choice for the form of ΨVB will be a single spatial configuration of
N singly-occupied orbitals, i.e., a spin-coupled wavefunction

ΨVB = A
(
ΦcoreφVB

1 φVB
2 · · ·φVB

N ΘN
SM

)
. (5)
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Optimization of this type of wavefunction has formed the basis for applications on a
wide variety of molecular systems [6] with a significant degree of success in providing
understanding of nondynamical electron correlation effects. The expansion coefficients
of the total spin function ΘN

SM in the full allowed spin space are termed the spin-
coupling coefficients (cSk).

It proves useful to consider the wavefunction space generated by first-order
changes in the valence bond variational parameters. For the orbital parameters we
may define

Ê⊥µν = Êµν − 〈φµ|φν〉Êνν , (6)

describing an excitation φν → φµ such that the first-order function

Ψµν ≡ Ê⊥µνΨVB (7)

is ensured to be orthogonal to the reference function. We use a similar notation for
changes in the structure parameters:

ΨI = Ê⊥I1ΨVB, I = 2, . . . ,NVB, (8)

such that the {Ψ2, Ψ3, . . .} form the (NVB−1)-dimensional orthogonal complement to
ΨVB. For the energy-based criterion this formulation leads to the well-known Brillouin
conditions for a stationary point:

∂EVB

∂cµν
= 2
〈
ΨVB

∣∣Ĥ∣∣Ψµν

〉
= 0 ∧ ∂EVB

∂cI
= 2
〈
ΨVB

∣∣Ĥ∣∣ΨI

〉
= 0, (9)

where cµν and cI are the parameters corresponding to the variations Ê⊥µν and Ê⊥I1 (real
wavefunctions are assumed here). Closely analogous relations exist for the overlap-
based criterion

∂SVB

∂cµν
= 〈ΨCAS|Ψµν〉 = 0 ∧ ∂SVB

∂cI
= 〈ΨCAS|Ψ〉 = 0. (10)

The overlap-based optimization will, loosely speaking, seek to minimize the contribu-
tions in the total CASSCF wavefunction from:

• Structures generated by single orbital replacements from the reference. (In the case
of a spin-coupled wavefunction, these may be termed either singly ionic or singly
excited structures.)

• Alternative linear combinations of structure coefficients.

Due to the nonorthogonality of structures, however, the coefficients of these structures
may be nonvanishing. This raises the question of how sensibly to define weights of
the nonorthogonal structures.



T. Thorsteinsson, D.L. Cooper / Nonorthogonal weights of CASVB wavefunctions 109

3. Definitions of nonorthogonal weights

We review here various definitions of weights for nonorthogonal structures and
their implementation within CASVB. In general, we consider a wavefunction given as
a linear combination of nonorthogonal structures

Ψ =
∑
I

cIΨI , (11)

with (S)IJ = 〈ΨI |ΨJ 〉. We wish to assign weights w(ΨI ) (or just wI ) as measures of
the ‘importance’ of each ΨI in this expansion. It is useful to consider some desirable
features for such schemes:

(1) Normalization, i.e.,
∑

I wI = 1.

(2) Meaningful range, i.e., ∀I , 0 6 wI 6 1.

(3) Linearity, i.e., ∀I ,J , w(ΨI ) +w(ΨJ ) = w(ΨI + ΨJ ).

(4) Correct limit, i.e., S = 1⇒ wI = c2
I .

None of the schemes considered here will adhere to all four points.
One of the simplest and most stable schemes for assigning nonorthogonal weights

is that due to Chirgwin and Coulson [5]. Restricting one of the summations, in the
normalization condition for Ψ, weights may be defined according to

wI =
∑
J

c∗JcISJI = 〈Ψ|ΨI〉cI . (12)

Points 1, 3 and 4 trivially hold in this case; the main problem with Chirgwin–Coulson
weights is that they may lie outside the interval [0;1].

The definition of weights is unambiguous when the functions are orthogonal,
suggesting that it could be useful to define weights by orthogonalization(s) of the {ΨI}.
There are many such schemes that can lead to sensible weights. If, for example, only
the weights for a subset of functions are of interest, then it could be useful to perform
an orthogonalization only of the remaining functions, so that a block-diagonal overlap
matrix is defined. This can lead to significant simplifications. Indeed, the overlap-
based criterion in equation (3) can be viewed as a partitioning of the CASSCF space
according to

ΨCAS = SVBΨVB +
(
1− S2

VB

)1/2 Ψ⊥RES, (13)

followed by a maximization of the weight for ΨVB. A similar strategy can be applied
to the analysis of VB structures if, for example, the weight of specifically the perfectly
paired structure is of interest. In the more general case, in which weights of all
functions could be of interest, Löwdin’s scheme for symmetric orthogonalization [26]
is an attractive option. This leads to orthogonalized functions deviating as little as
possible, in a root mean square sense, from the original set. Weights defined in this
way will adhere to points 1, 2 and 4 listed above. The well known Mulliken [29] and
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Löwdin procedures for population analysis are of course just special applications of
the Chirgwin–Coulson and symmetrically-orthogonalized weights.

Another procedure of some merit is the ‘inverse-overlap scheme’ due to Gallup
and Norbeck [17,18]. Weights are defined according to

wI = |cI |2/
(
S−1)

II
. (14)

The diagonal element of S−1 gives a measure of the length of the ‘unique’ component
of ΨI ,

1/
(
S−1)

II
=
∥∥Ψ⊥I

∥∥2
, (15)

in which Ψ⊥I is orthogonal to the other members of the set. The weights defined in
this way adhere only to items 2 and 4 above, but are customarily also normalized to
unity.

The implementations within CASVB of the nonorthogonal weights just outlined
all take advantage of the following simple relation:

S = T†(O)T(O) = T
(
O†O

)
= T(s), (16)

where we have used S for the overlap matrix between structures and s for the orbital
overlaps. In the case where ΨVB is used in combination with a projection operator
(e.g., P̂SYM [39]), the expression for S may be slightly more involved, but it can
always be expressed in terms of the two full CI transformations T(O†) and T(O).
Extra care should also be taken when interpreting the results in this case. Of course,
T(s) is not evaluated explicitly, for the same reasons as we avoid direct construction
of T(O). Computation of the overlap matrix between valence bond structures requires
NVB applications of T(s):

(SVB)IJ = c(I)†T(s)c(J), (17)

where the c(I) are the CI vectors corresponding to valence bond structures ΨI . Diago-
nalization of SVB can then give both the inverse and square root of the overlap matrix,
which leads to the inverse-overlap and Löwdin-orthogonalized weights, respectively.

Forming explicitly the complete overlap matrix in the full CI structure basis is of
course untenable for anything but the smallest active spaces, and the implementation
of weights must therefore rely on one or more full CI transformations. For example, in
the case of the Chirgwin–Coulson definition of weights, we consider the normalization
condition for a vector expressed in the basis of VB structures:

c†
(
T(s)c

)
= 1. (18)

Partitioning this summation yields all the required weights, so that a single full CI
transformation is sufficient in this case. This also proves to be the true for Löwdin-
orthogonalized weights, in which we require the effect of one application of S1/2:

S1/2S1/2 = S = T(s) ⇒ S1/2 = T
(
s1/2)

. (19)
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It is clear from this last expression that a symmetric orthogonalization of the full CI
structure space is strictly equivalent to a symmetric orthogonalization of the underlying
orbital basis.

Evaluation of inverse-overlap weights is somewhat more involved. We intro-
duce the set of vectors {c(I)} such that c(I) is zero except for (c(I))I = cI , so that
equation (14) can then be recast in the form

wI =
(c(I)†c(I))2

c(I)†S−1c(I) ,
∥∥c(I)

∥∥ 6= 0. (20)

Of course, if c(I) is the zero vector we set wI = 0. In order to consider the case where
the {c(I)} do not form a diagonal matrix, we then insert resolutions of the identity,
using a unitary transformation, U:

wI =
(c(I)†U†Uc(I))2

c(I)†U†US−1U†Uc(I) =
(c′(I)†c′(I))2

c′(I)†(S′)−1c′(I) . (21)

This means that provided a general set of vectors, {c′(I)}, can in principle be brought
into diagonal form by a unitary transformation, one may use equation (21) to obtain
the corresponding inverse-overlap weights.

For the weights of spatial configurations in the CI expansion, the set {c′(I)} is
not diagonal, because each configuration occurs as a combination of several structures,
but it is trivial to show that such a diagonalization can in fact be performed. Unfortu-
nately, the associated computational effort becomes substantial for larger active spaces,
because an application of T(s−1) must be carried out for each spatial configuration.
This problem can be significantly alleviated by grouping configurations together (for
example, according to ionicity or to excitation level). Thus, it is clear that the effort
involved is closely connected to the ‘resolution’ required for the weights.

4. Applications

Trans-1,3,5-hexatriene

As an example of a notionally ‘covalent’ system, we consider the conjugated hy-
drocarbon trans-1,3,5-hexatriene. This system has been the subject of recent CASSCF
and CASPT2 studies [34], as well as some earlier GVB-CI [30,31] and CI [3,4] inves-
tigations. The calculations described here employed Dunning’s VTZ basis sets [11]
for C/H, consisting of (10s5p/5s) Cartesian GTOs contracted to [4s3p/3s], to which
were added a d-function on each carbon and a p-function on each hydrogen (exponents
α =0.8 and α =1.0, respectively). The geometry used here was that determined by
electron diffraction on the ground state [22].

The σ electrons were kept in an (optimized) core in all calculations, while all π
electrons were described at the CASSCF level. We consider both ‘6 in 6’ and ‘6 in 8’
CASSCF calculations for the 1Ag ground state and for the first excited state of 1Ag

symmetry. Energies for the various MO-based calculations are collected in table 1.
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Table 1
Energies for various calculations on hexatriene.

Calculation State E (hartree)

SCF 11Ag −231.866981
‘6 in 6’ CASSCF 11Ag −231.949701
‘6 in 6’ CASSCF 21Ag −231.740642
‘6 in 8’ CASSCF 11Ag −231.953994
‘6 in 8’ CASSCF 21Ag −231.745708

Figure 1. Symmetry-unique CASVB orbitals for the 11Ag state of hexatriene. Orbitals φ4, φ5 and φ6

may be generated from φ3, φ2 and φ1 by Ĉ2 rotations. The orbitals are plotted 1 bohr above the
molecular plane. In sequence the three orbital sets are: unconstrained optimization, optimization with

strong orthogonality constraint, optimization with a single perfect-pairing structure.
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Table 2
CASVB overlaps and energies for max(SVB) interpretations of
‘6 in 6’ CASSCF calculations. For the 21Ag state, the strong
orthogonality calculation is based on the pairing (23)(45)(16).

Method of interpretation SVB EVB (hartree)

(a) 11Ag
SC 0.999590 −231.948901
SC + Löwdin orthogonalization 0.571618 −231.290334
SC + full orthogonality 0.577851 −231.273492
SC + strong orthogonality 0.993307 −231.939698
SC + perfect pairing 0.997181 −231.945481

(b) 21Ag
SC 0.998517 −231.738354
SC + Löwdin orthogonalization 0.659124 −231.363292
SC + full orthogonality 0.672102 −231.350493
SC + strong orthogonality 0.899971 −231.680931

Table 3
Coefficients and weights of structures based on the Kotani spin basis
(all structures are defined with a normalized spin function), for the
CASVB interpretations of the ‘6 in 6’ CASSCF wavefunctions. c, i
and s refer to Chirgwin–Coulson, inverse-overlap, and symmetrically

orthogonalized weights, respectively.

Ψ1 Ψ2 Ψ3 Ψ4 Ψ5

(a) 11Ag
cSk 0.0035 −0.0341 0.0930 0.0930 0.612
cw(k) 0.0046% 0.10% 0.99% 0.99% 97.92%
iw(k) 0.00031% 0.03% 0.43% 0.43% 99.11%
sw(k) 0.01% 0.11% 1.16% 1.16% 97.54%

(b) 21Ag
cSk −0.1507 0.7731 −0.6354 −0.6354 −0.3354
cw(k) 2.34% 40.68% 25.77% 25.77% 5.43%
iw(k) 0.52% 27.03% 24.97% 24.97% 22.51%
sw(k) 3.84% 39.92% 24.07% 24.07% 8.10%

The overlap-based CASVB representation of the ‘6 in 6’ ground state calculation
was based on a single-configuration spin-coupled wavefunction. The valence bond
description arising from such a treatment consists of localized orbitals on each carbon
with some deformation towards the neighbouring carbon centres (see top row of fig-
ure 1). The overlap between the modern valence bond and CASSCF wavefunctions,
SVB, amounts to 0.999590 (see table 2(a)) which is even higher than we have found for
other calculations based on ‘6 in 6’ active spaces. The energy difference EVB−ECAS

is accordingly just 0.8 millihartree. The electron spins couple to a very good ap-
proximation according to the perfect-pairing mode (12)(34)(56), as indicated by the
spin-coupling coefficients and their weights (see table 3(a)). The Chirgwin–Coulson
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Table 4
Overlaps between (normalized) orbitals for max(SVB) interpre-
tations of CASSCF wavefunctions for the 11Ag state (lower

triangle) and 21Ag state (upper triangle) of hexatriene.

φ1 φ2 φ3 φ4 φ5 φ6

Unconstrained VB (‘6 in 6’)
φ1 0.619 0.204 0.118 −0.001 0.061
φ2 0.652 0.557 0.156 −0.119 −0.001
φ3 0.086 0.309 0.605 0.156 0.118
φ4 0.029 0.072 0.641 0.557 0.204
φ5 −0.020 −0.084 0.072 0.309 0.619
φ6 0.006 −0.020 0.029 0.086 0.652

Unconstrained VB (‘6 in 8’)
φ1 0.618 0.206 0.124 0.001 0.066
φ2 0.656 0.562 0.162 −0.125 0.001
φ3 0.094 0.309 0.620 0.162 0.124
φ4 0.041 0.080 0.650 0.562 0.206
φ5 −0.023 −0.093 0.080 0.309 0.618
φ6 0.006 −0.023 0.041 0.094 0.656

Perfect-pairing VB (‘6 in 6’) 11Ag
φ1 1
φ2 0.599 1
φ3 0.161 0.618 1
φ4 −0.106 0.135 0.537 1
φ5 −0.040 0.012 0.135 0.618 1
φ6 0.003 −0.040 −0.106 0.161 0.599 1

weights in this case agree very well with the weights of the Löwdin-orthogonalized
structures, whereas inverse-overlap weights attribute a higher importance to the per-
fectly paired function. The orbital overlaps for this wavefunction are given in table 4.

The consequences of augmenting the wavefunction with ionic structures may be
assessed by evaluating weights of the total CASSCF wavefunction, transformed to the
orbital representation defined by max(SVB). We report in table 5(a) the accumulated
weights for configurations with the various possible ionicities, analyzing both ΨCAS and
the residual function Ψ⊥RES = ΨCAS − SVBΨVB. Even though the Chirgwin–Coulson
weights may fall outside the meaningful range [0;100%], it is nevertheless clear that
the covalent configuration strongly dominates, while the contributions from triply ionic
structures are negligible. The fact that the weights of the doubly ionic structures dom-
inate the residual vector is consistent with the observation that the optimization of the
orbitals tends to minimize contributions from singly ionic structures. The Brillouin-
like condition embodied in equation (10) also reduces the Chirgwin–Coulson covalent
weight in Ψ⊥RES to zero (cf. equation (12)). The inverse-overlap weights show qual-
itative agreement with these findings, except for the non-zero covalent weight in the
residual vector. The effect of orthogonalizing the structures can be seen to be very
severe in this case. The weight of the covalent configuration falls to 32.8%, which
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Table 5
Accumulated weights of configurations in the hexatriene ‘6 in 6’ CASSCF wavefunctions accord-

ing to their ionicity. The entries ‘≈0’ signify zero within numerical accuracy.

Ionicity Chirgwin–Coulson Inverse-overlap Löwdin

ΨCAS (%) Ψ⊥RES (%) ΨCAS (%) Ψ⊥RES (%) ΨCAS (%) Ψ⊥RES (%)

(a) 11Ag
0 101.28 ≈0 98.04 2.85× 10−3 32.80 7.57× 10−4

1 −2.31 1.23× 10−2 7.06 × 10−1 2.85× 10−2 45.09 1.17× 10−2

2 1.03 6.90× 10−2 1.24 5.01× 10−2 19.50 5.55× 10−2

3 −1.75× 10−4 6.63× 10−4 1.34 × 10−2 5.41× 10−4 2.61 8.20× 10−2

(b) 21Ag
0 112.63 ≈0 90.98 3.67× 10−2 43.63 3.20× 10−2

1 −11.98 2.58× 10−1 8.74 2.51× 10−1 46.44 1.48× 10−1

2 −7.08× 10−1 3.63× 10−2 2.86 × 10−1 8.22× 10−3 9.51 1.13× 10−1

3 5.72 × 10−2 2.01× 10−3 5.49 × 10−4 1.58× 10−5 4.23 × 10−1 3.12× 10−3

is clearly not satisfactory when compared to the value obtained with nonorthogonal
orbitals.

Orthogonal orbitals are of course often associated with large weights for ionic
structures and so, to investigate this proposition further, a max(SVB) optimization was
carried out with full orthogonality constraints. The optimal value for SVB becomes
0.577851, corresponding to a covalent weight of 33.39%; this is only slightly better
than for the Löwdin-orthogonalized set. All of these orbitals are very tightly localized
on individual carbon atoms. The two orbital sets are very similar, with overlaps of
0.997, 0.998 and 0.996 between the respective orbitals 1, 2 and 3. Weights accumulated
according to the ionicity of configurations are given in table 6 for the fully orthogonal
orbital set. A somewhat less severe type of constraint is that of ‘strong orthogonality’,
in which the bond-forming orbital pairs are allowed to overlap: such an optimization
leads to an SVB value of 0.993307, which is quite acceptable. Contour plots of these
orbitals are depicted in the second row of figure 1 and it is noticeable that they lack the
secondary deformations found previously for orbitals φ2 and φ3. However, φ1 is very
similar in the two sets, with an overlap of 0.997; for comparison, the overlaps between
the two sets are 0.988 and 0.984 for φ2 and φ3, respectively. Given that deforma-
tions along the bond-forming directions are vastly more important than the secondary
distortions, it is also natural to expect the corresponding singly ionic structures to
dominate in the orthogonal representations of the CASSCF wavefunction. The accu-
mulated weights for the eight structures formed by excitations between bond-forming
orbitals are 43.56% (total 44.48%) for the constrained and 41.83% (total 45.09%) for
the symmetrically orthogonalized orbital sets. This over-whelming dominance is not
surprising in view of the large optimal values for the overlaps between these orbitals;
in the strong orthogonality case they amount to 〈φ1|φ2〉 = 0.665, 〈φ3|φ4〉 = 0.657
and 〈φ5|φ6〉 = 0.665. A clear conclusion of this type of analysis must be that Löwdin
orthogonalization is too severe to allow a reasonable interpretation of configuration
weights, at least in the case of a complete CASSCF wavefunction.
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Table 6
Accumulated weights according to the ionicity of configurations in the total 11Ag CASSCF wavefunction.
The entry ‘≈0’ signifies zero within numerical accuracy. ‘F’ denotes here the orbital set obtained with

full orthogonality constraints, while ‘S’ denotes the strong-orthogonality orbital set.

Ionicity ΨCAS (F) Chirgwin–Coulson Inverse-overlap Löwdin

(%) ΨCAS (S) Ψ⊥RES (S) ΨCAS (S) Ψ⊥RES (S) ΨCAS (S) Ψ⊥RES (S)
(%) (%) (%) (%) (%) (%)

0 33.39 97.16 ≈0 74.67 1.03 × 10−3 33.37 6.68 × 10−5

1 44.48 4.22 1.21 22.96 1.21 44.49 8.82 × 10−1

2 19.37 −1.40 1.22× 10−1 2.34 1.23 × 10−1 19.38 4.33 × 10−1

3 2.76 1.31× 10−2 3.27× 10−3 3.01 × 10−2 1.58 × 10−3 2.76 1.91 × 10−2

Table 7
CASVB overlaps and energies for max(SVB) interpretations of a
‘6 in 8’ CASSCF ground state calculation for hexatriene. Orbitals
φ⊥7 and φ⊥8 are kept orthogonal to {φ1–φ6}. There are no such

restrictions on φ7 and φ8.

Method of interpretation SVB EVB (hartree)

SC 0.997807 −231.948743
SC + (φ1 → φ7) + (φ2 → φ8) 0.998163 −231.949362
SC + (φ1 → φ⊥7 ) + (φ2 → φ⊥8 ) 0.998145 −231.949343
SC + (φ1 → φ7) + (φ3 → φ8) 0.998318 −231.949686
SC + (φ1 → φ⊥7 ) + (φ3 → φ⊥8 ) 0.998301 −231.949627
SC + (φ2 → φ7) + (φ3 → φ8) 0.998326 −231.949738
SC + (φ2 → φ⊥7 ) + (φ3 → φ⊥8 ) 0.998295 −231.949704

The strong orthogonality (SO) restriction favours the bonds formed between the
carbon pairs 1–2, 3–4 and 5–6, which is also a feature of the perfect-pairing (PP)
approximation. Indeed, these two approximations are often invoked together, as in
the common GVB-SOPP procedure. To compare the two effects of the SO and PP
approximations, we performed a fully-variational optimization with a single, perfectly-
paired VB structure. The resulting orbitals are shown in the third row of figure 1.
It is noticeable that the secondary deformations of the four central carbon orbitals
within the perfect-pairing approximation turn out to be somewhat larger than when
the full spin space is included. It therefore seems that the overall exchange interac-
tion between these respective centres becomes unfavourable for too large deforma-
tions.

We turn now to the ‘6 in 8’ CASSCF calculation on the hexatriene ground state.
Compared to the ‘6 in 6’ CASSCF, this treatment can be viewed as incorporating
some degree of predominantly dynamical correlation. We may still choose to interpret
the wavefunction using a single configuration of spin-coupled form, although some
lowering of SVB is of course then to be expected. The value goes down to 0.997807
in this case (see table 7). This is a feature of the superiority of the ‘6 in 8’ CASSCF
wavefunction, rather than any reflection of differences between the two VB wavefunc-
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Table 8
Accumulated weights in the total ‘6 in 8’ 1Ag CASSCF wave-
functions according to the number of excitations from {φ1–φ6}

into {φ7,φ8}.

Excitation level 11Ag (%) 21Ag (%)

0 99.651 99.515
1 0.197 0.325
2 0.151 0.160
3 1.43× 10−4 1.31 × 10−4

4 4.14× 10−5 5.92 × 10−5

tions. The EVB values can accordingly be seen to be quite similar, −231.948901 vs.
−231.948743 hartree.

Within the orbital representation defined by maximizing SVB with the spin-
coupled reference, the configurations defining a ‘6 in 6’ CASSCF space using orbitals
φ1–φ6 amount to 99.65% of the total ‘6 in 8’ CASSCF wavefunction (table 8). This
value can be evaluated exactly by imposing orthogonality between the two orbital sets
{φ1–φ6} and {φ7,φ8}. Given that the spin-coupled configuration represents 99.56%
(= S2

VB) of the total wavefunction, we obtain a similar proportion of the ‘6 in 6’
CASSCF – 99.91%, corresponding to an ‘SVB’ of 0.999553 – as seen in the previous
optimization.

It therefore seems that the ‘6 in 8’ CASSCF wavefunction can be viewed, to a
good approximation, as the (unchanged) ‘6 in 6’ CASSCF to which has been added
configurations corresponding to excitations into orbitals φ7 and φ8. With this in
mind, we next augmented the spin-coupled configuration with excitations into these
orbitals:

ΨVB = c1ΨSC + P̂ (1)
SYM

{
c2Ê71ΨSC + c3Ê82ΨSC

}
, (22)

in which P̂ (1)
SYM projects onto the Ag irreducible representation [39]. The use of P̂ (1)

SYM

is equivalent to adding also the configurations generated by excitations φ6 → Ĉ2φ7 and
φ5 → Ĉ2φ8. We maximized SVB with respect to the coefficients defining φ7 and φ8, as
well as the structure coefficients for the excited configurations. Both an unconstrained
optimization was carried out and an optimization in which orbitals φ7 and φ8 were
kept orthogonal to the spin-coupled orbital set. Values for SVB and EVB are shown in
table 7, in which excitations from orbital pairs φ1,φ3 and φ2,φ3 are also considered.
Allowing nonorthogonality corresponds to incorporating ionic ‘6 in 6’ configurations
and will, as such, recover some static correlation effects. However, as can be seen,
this effect is relatively minor. All in all the gain upon adding to the wavefunction
the two singly excited structures is somewhat disappointing, recovering only a small
fraction of the 0.197% attributable to singly excited configurations. In this case, these
configurations represent a larger fraction of the total CASSCF wavefunction than can
be attributed to the doubly excited configurations – this is in spite of the Brillouin-type
condition embodied in equation (10). However, all of the orbital representations of
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the CASSCF wavefunction assign uniformly quite small weights to these configura-
tions, and so there is no clear-cut way of augmenting ΨVB, short of adding a relatively
large number of excited structures. This can, on the other hand, be interpreted as an
indication that ΨVB is unlikely to have serious deficiencies in a correlation sense.

For the overlap-based interpretation of the ‘6 in 6’ excited state, a single con-
figuration spin-coupled wavefunction again leads to an adequate description, giving
SVB = 0.998517 (see table 2(b)). The orbital change relative to the ground state
calculation is only minor, and the major effect is a recoupling of the electron spins,
i.e., a change of the form given in equation (8). This is in accordance with earlier
observations that “the 21Ag state . . . has the character of the broken-bond valence bond
structure . . . ” [30]. As shown in table 3(b), the weight of the perfect-pairing structure
is now quite small, as is to be expected on orthogonality grounds. The orbitals are
shown in figure 2, with the corresponding overlaps in table 4. It is clear that the de-
formations in the directions 1–2, 3–4 and 5–6 are still substantial, although the other
nearest neighbour overlaps have increased significantly.

There is no longer any obvious pairing scheme between the orbitals, and so there
is no straightforward way of selecting appropriate strong orthogonality or perfect-
pairing approximations. The pairing scheme (23)(45)(16) seems to be the best candi-
date, since this leads to the greatest weight of the perfect-pairing structure (54.77%)
and it also yields the optimal strong orthogonality solution. The SVB value is, however,
significantly inferior to the corresponding ground state result (see table 2(b)). The non-
zero orbital overlaps are 〈φ2|φ3〉 = 0.649, 〈φ4|φ5〉 = 0.649 and 〈φ1|φ6〉 = −0.017.
Imposing the perfect-pairing mode of spin coupling also seems to be too severe a
restriction for this system, and leads to linear dependence in the orbital set.

The Chirgwin–Coulson and inverse-overlap analyses of the CASSCF residual
vector suggests a dominance of the singly ionic structures, with higher ionicities be-
ing orders of magnitude less important (see table 5(b)). As one would expect, the
configurations generated by excitations between neighbouring centres dominate, with
the larger weights arising from the 2→1 and 3→4 (and symmetry-related) excitations;
these account for 0.16% (Chirgwin–Coulson) or 0.08% (inverse-overlap). Perform-
ing the corresponding five configuration optimization then leads to an SVB value of
0.998927 with a corresponding energy of −231.738914 hartree.

Figure 2. Symmetry-unique CASVB orbitals for the 21Ag state of hexatriene.
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For the ‘6 in 8’ excited state calculation a similar picture emerges as for the
ground state. The SVB value achieved with ΨVB of spin-coupled form was in this case
0.996067, with a corresponding energy of −231.738079 hartree. Accumulated weights
for the CASSCF solution are given in table 8, according to the number of excitations
into orbitals φ7 and φ8. As before, the overlap between ΨVB and the ‘6 in 6’ part of this
wavefunction is very similar to the true ‘6 in 6’ result: SVB = 0.998493 (see table 2(b)).
However, while the remaining part of the wavefunction is clearly dominated by single
and double excitations, the distribution of weights for these configurations is highly
uniform.

N2S2

N2S2 is a system for which significant charge separation might be expected. It is
also of interest due to the rival bonding schemes that have been suggested – we show
three such models in figure 3. The spin-coupled description of N2S2 has recently been
considered by Gerratt et al. [19], who proposed a singlet diradical structure, resembling
(a) in figure 3. A different diradical description was considered by Harcourt and
Skrezenek [20,35], in which the long bond is formed between the nitrogen centres
(structure (b) in figure 3). A third possibility – (c) in figure 3 – was suggested by
Findlay et al. [15]. It involves one sulfur centre taking part in two double bonds, with
a lone pair on the other sulfur atom. We describe here the various CASVB descriptions
of this system, as well as the role played by the ionic configurations.

We assumed a square geometry for S2N2 with S–N bond lengths of 165.4 pm (as
in [19]) and used a DZP basis set due to Dunning [10]. The molecule was oriented
with N atoms lying on the x-axis and S atoms on the y-axis. We concentrate here on
the description of the 6 valence π electrons, keeping all σ electrons and the four S(2pz)
electrons as (optimized) core. The three rival models in figure 3 may be characterized
according to the transformation properties of the active orbitals:

(a) (b)

(c)

Figure 3. Lewis structures for N2S2.
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(a) 3× B1u + B2g + 2× B3g;

(b) 3× B1u + 2× B2g + B3g;

(c) 3×B1u+3×B2g+3×B3g +3×Au → CASSCF: 2×B1u+B2g+2×B3g+Au.

The valence bond orbitals do not transform as individual irreducible representa-
tions, but the full set of orbitals must form a basis for a representation of the molecular
point group. Since (c) involves two configurations, this strictly requires twelve active
orbitals but, in order to facilitate direct comparison between the different models, this
was reduced to six by use of the symmetry projection operator described later.

The symmetry distribution of active orbitals appropriate to the S–S diradical
structure (a) leads to the lowest ‘6 in 6’ CASSCF solution. Energies for the various
MO-based calculations are collected in table 9, in which we refer to this wavefunction
as CASSCF a. The CASVB interpretation of this wavefunction reproduces the spin-
coupled picture [19], giving an SVB value of 0.999827 and EVB = −903.847542
hartree. The orbitals are shown in figure 4.

The alternative N–N diradical structure (b) may also be obtained in a very straight-
forward manner by interpretation of the CASSCF solution b. The orbitals are shown
in figure 5. It is noticeable how similar the two diradical descriptions become when
rotated by 90◦. The energy of this alternative CASSCF solution lies about 8.6 milli-
hartree higher than the lowest solution and so, in spite of a high SVB of 0.999799, the
modern VB energy (EVB = −903.838825 hartree) is somewhat higher than that for
the S–S diradical structure.

As shown in table 9, we find that CASSCF wavefunction c lies very close in
energy to solution a. The six CASVB orbitals are shown in figure 6 – they define one
of two equivalent valence bond configurations. The optimization was carried out using
the symmetry projection operator P̂ (Ag+B2u)

SYM [39] to ensure correct overall symmetry
with respect to reflection in x = 0. In addition, the spin function was restricted to be
of perfect-pairing form, in order to avoid linear dependency problems. This appears to
be the consequence of the very localized orbitals associated with the same sulfur atom.
We found that allowing partial triplet coupling of the electron spins corresponding to
either of the orbital pairs led to almost identical orbitals. In spite of this restriction
on the mode of spin coupling, the overlap with the CASSCF wavefunction was very
acceptable (SVB = 0.999523) leading to an energy within 2 millihartree of solution a
(EVB = −903.845939 hartree).

Table 9
Energies for various calculations on N2S2.

Calculation E (hartree)

SCF −903.784035
CASSCF b −903.839551
CASSCF c −903.847628
CASSCF a −903.848173
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Figure 4. CASVB orbitals from the interpretation of the CASSCF a N2S2 solution.

Figure 5. CASVB orbitals from the interpretation of the CASSCF b N2S2 solution.
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Figure 6. CASVB orbitals from the interpretation of the CASSCF c N2S2 solution.

It seems clear that an S–S diradical structure is, in fact, a very good description
for calculations with 6 active π orbitals, but alternatives a and c lie far too close in
energy to allow definitive statements to be made. In any case, all three models could
play important roles in more extensive computational treatments and, particularly, for
different molecular geometries. The various overlap matrices are reported in table 10,
with structure coefficients and weights in table 11. An important feature is the oc-
currence of negative overlaps for the S–S and N–N diradical orbital pairs, with nodal
planes between the two participating centres, so that for none of these descriptions can
there be any question of cross-ring bonding.

We now consider the analysis of the CASSCF vector a, for which the CASVB
picture corresponds to significant charge separation, although the distinct three-centre
nature of orbitals φ1 and φ3 serves to distribute the charge somewhat more evenly
than is suggested by scheme (a) in figure 3. Weights for the various ionicities are
shown in table 12. Of particular note is the very low covalent weight in the total
CASSCF wavefunction with the inverse-overlap definition. The sum of the (unnor-
malized) inverse-overlap weights turns out to be just 2.21 × 10−3%, signifying very
short ‘unique’ components for all configurations (cf. equation (15)). For comparison,
the corresponding sum of weights for the residual vector represents 4.76% of this vec-
tor. Those configurations in which φ5 and/or φ6 become doubly occupied are by far
the most important, but the overall contribution from ionic structures is very small.
With increasing (nondynamical) correlation there is a tendency to homogenize the
charge distribution, as is to be expected. The two configurations φ5φ5φ6φ6φ1φ2 and
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Table 10
Overlap matrices for the overlap-based interpretations of N2S2.

φ1 φ2 φ3 φ4 φ5 φ6

CASVB solution a
φ1 1
φ2 0.767 1
φ3 0.832 0.488 1
φ4 0.488 0.330 0.767 1
φ5 0.338 0.123 0.338 0.123 1
φ6 0.338 0.123 0.338 0.123 −0.595 1

CASVB solution b
φ1 1
φ2 0.444 1
φ3 0.649 −0.114 1
φ4 −0.114 −0.058 0.444 1
φ5 0.237 0.590 −0.105 0.034 1
φ6 −0.105 0.034 0.237 0.590 0.610 1

CASVB solution c
φ1 1
φ2 0.886 1
φ3 0.704 0.506 1
φ4 0.506 0.442 0.886 1
φ5 0.391 0.200 0.391 0.200 1
φ6 0.391 0.200 0.391 0.200 −0.355 1

Table 11
Coefficients and weights of structures based on the Kotani spin basis
(structures are defined with a normalized spin function), for the CASVB
interpretations of the ‘6 in 6’ CASSCF N2S2 solutions a and b, respec-
tively. Structures 1–3 are disallowed by symmetry. c, i and s refer
to Chirgwin–Coulson, inverse-overlap, and symmetrically orthogonalized

weights, respectively.

Solution a Solution b

Ψ4 Ψ5 Ψ4 Ψ5

cSk 0.1578 0.8464 0.1218 0.8297
cw(k) 4.94% 95.06% 0.84% 99.16%
iw(k) 0.84% 99.16% 0.09% 99.91%
sw(k) 10.97% 89.03% 2.33% 97.67%

φ5φ5φ6φ6φ3φ4 attain the overall largest Chirgwin–Coulson and inverse-overlap weights
in the residual vector (1.34 × 10−2% and 3.68 × 10−3% each, respectively) and per-
forming a three configuration optimization that includes these gives SVB = 0.999879.

Within the Chirgwin–Coulson definition, the singly ionic configurations dominate
the residual vector, and so we investigated calculations in which the SC reference was
augmented by configurations generated by single excitations. Adding the configuration
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Table 12
Accumulated weights according to the ionicity of configurations in the total CASSCF a wave-

function for N2S2. The entry ‘≈0’ signifies zero within numerical accuracy.

Ionicity Chirgwin–Coulson Inverse-overlap Löwdin

ΨCAS (%) Ψ⊥RES (%) ΨCAS (%) Ψ⊥RES (%) ΨCAS (%) Ψ⊥RES (%)

0 126.69 ≈0 27.60 9.12× 10−4 17.39 2.01 × 10−3

1 −24.16 2.35 × 10−2 21.42 9.94× 10−3 47.74 1.10 × 10−2

2 −2.07 1.38 × 10−2 50.87 2.36× 10−2 30.41 1.90 × 10−2

3 −4.56× 10−1 −2.76× 10−3 1.10 × 10−1 5.10× 10−5 4.46 2.48 × 10−3

generated by the excitation φ1 → φ5 (and symmetry-related counterparts) led to SVB =
0.999853. The corresponding excitation(s) φ2 → φ5 led to SVB = 0.999865, and the
combination of both types of excitation gave SVB = 0.999973. It should be noted that
while these excitations each represent four configurations, the number of variational
parameters is only increased by one each time. This can be seen in relation to a
total number of 12 symmetry preserving SC parameters as opposed to 55 CASSCF
parameters associated with the active space. The extra computational effort involved
in this enlargement of the wavefunction is minimal within the CASVB strategy, and it
leads to an extremely accurate representation of the CASSCF solution.

5. Conclusions

Considering the various definitions of weights, it is clear that for realistic cases
the change involved in an orthogonalization (even if symmetric) of the full functional
space is too severe to lead to a complete set of sensible weights. We have shown
that this is closely related to the inability of orthogonal orbitals to yield compact
VB wavefunctions of reasonable quality. For the analysis of the CASSCF vector, the
relative magnitudes of the weights change dramatically, but also for the analysis of VB
structures an appreciable equalization of the weights can be observed. The Chirgwin–
Coulson and inverse-overlap definitions generally show better agreement in this case,
although inverse-overlap weights tend to attribute greater importance to the dominant
components. Both the Chirgwin–Coulson weights and inverse-overlap populations
behave somewhat erratically in the analysis of the total CASSCF vector, but this
behaviour largely disappears for the ‘residual vector’, Ψ⊥RES = ΨCAS − SVBΨVB.

Analysis of the residual wavefunction, Ψ⊥RES, using either the Chirgwin–Coulson
or inverse-overlap scheme, thus seems to be a useful strategy for gaining a further un-
derstanding of the important correlation effects in CASVB, and related, calculations.
The two definitions generally show excellent qualitative agreement, but the evaluation
of Chirgwin–Coulson weights is, of course, computationally cheaper. The relative im-
portance of configurations of varying ionicity or excitation level can be assessed with
confidence. Strongly dominating configurations can suggest useful ways of augment-
ing the first-order function, as was illustrated by the case of N2S2. Conversely, one
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may argue that with reasonably good values of SVB, the absence of such components
increases one’s confidence in the quality of the modern valence bond description.

Finally, it is clear that a flexible approach to valence bond calculations is of
paramount importance in the study of chemical bonding. Within the CASVB approach,
particularly important features in this respect include:

• choice of transformation properties of the active space (as a direct sum of irreducible
representations);

• single- or multiconfigurational wavefunctions;

• use of symmetry projection operators;

• flexible constraints (e.g., to ensure correct wavefunction symmetry).

A single configuration wavefunction of spin-coupled form remains a natural start-
ing point for the majority of applications, but a systematic approach is clearly required
in order to assess with confidence the relative importance of rival descriptions. This,
and the systematic way in which further correlation may be incorporated, are strong
points in favour of the CASVB procedure.
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